1 1 1 1 1 1 1 1 1 1

Schweizer Wissenschaftler entwickeln zusammen mit anderen Forschungsinstituten ein kostengünstiges Solarkonzentrator-Systems (englisch: High Concentration PhotoVoltaic Thermal, kurz: HCPVT) unterstützt.. Es soll das Sonnenlicht 2000-fach konzentrieren und 80% der einfallenden Strahlung in nutzbare Energie umwandeln.

Der Einsatz ist in sonnenreichen Gebieten wie Inseln oder Wüsten, wo Strom, Trinkwasser und Klimatisierung gebraucht wird. Das System besteht aus großen Parabol-Kollektoren und Hochleistungs-Photovoltaik-Chips, die von Mikrokanälen gekühlt werden. Das Sonnenkraftwerk eignet sich für die Massenproduktion. An dem HCPVT Projekt arbeiten Wissenschaftler von IBM Research - Zürich, das Solarunternehmen Airlight Energy, der Lehrstuhl für Erneuerbare Energieträger der ETH Zürich und das Institut für Mikro- und Nanotechnologie MNT der Interstaatliche Hochschule für Technik Buchs. Die Schweizer Kommission für Technologie und Innovation unterstüzt die Forschung mit 2,25 Mio. Schweizer Franken. Die geplante Projektdauer beträgt drei Jahre.

Eine Studie der European Solar Thermal Electricity Association und Greenpeace International ergab, dass bereits zwei Prozent der Fläche der Sahara ausreichen würden, um den Strombedarf der Welt zu decken.* Gegenwärtige, am Markt erhältlich Solartechnologien können allerdings nicht in einem so großen Umfang eingesetzt werden, da sie nicht nur zu teuer und nicht schnell genug produzierbar sind, sondern auch große Mengen seltener Erden benötigen und ihre Effizienz häufig auch nicht befriedigend ist. Das HCPVT-Prototyp-System der Schweizer Wissenschaftler nutzt daher einen großen Parabolspiegel, der aus einer Vielzahl von Spiegelflächen besteht. Dieser ist auf einem Tracking-System befestigt, das den Spiegel im optimalen Winkel zur Sonne ausrichtet. Einmal ausgerichtet, reflektiert der Spiegel die Sonnenstrahlen auf mehrere so genannte Multichip-Empfänger mit Triple-Junction-Chips. Jeder der 1x1 Zentimeter großen Chips kann in einer sonnigen Region während eines Tages mit acht Stunden Sonnenschein durchschnittlich 200-250 Watt abgeben. Der ganze Empfänger vereinigt mehr als 100 solcher Chips und liefert 25 kW elektrische Energie. Die Photovoltaik-Chips sind auf einer Schicht aus Mikrokanälen befestigt, durch die flüssiges Kühlmittel nur wenige Mikrometer unterhalb des Chips hindurch gepumpt wird, um so die durch die Konzentration entstehende Hitze abzutransportieren. Diese Flüssigkühlung ist zehn Mal effektiver als eine passive Luftkühlung. Das Kühlmittel hält die Chips bei einer 2000-fachen Konzentration des Sonnenlichts auf einer nahezu gleichen Temperatur wie das Kühlmittel und kann selbst bei einer 5000-fachen Konzentration eine sichere Arbeitstemperatur gewährleisten.

Das Kühlsystem wurde durch den hierarchischen Aufbau des menschlichen Blutkreislaufes inspiriert und bedarf nur einer geringen Pumpkraft. „Wir planen den Einsatz von Triple-Junction-Photovoltaikzellen auf einem Mikrokanal gekühlten Modul, das mehr als 30% der gebündelten Sonnenstrahlung in Strom umwandeln kann und gleichzeitig eine Nutzung der Abfallwärme von über 50% zulässt,“ sagte Bruno Michel, Manager der Gruppe Advanced Thermal Packaging bei IBM Research – Zürich. „Wir denken, dass wir dies zuverlässig mit einem sehr praktischen Design, bestehend aus innovativen Sonnenfolgern aus Beton, und einer Primäroptik aus kostengünstigen, pneumatischen Spiegeln erreichen können. Es ist eine Neuentwicklung, die auf die Verwendung außergewöhnlich sparsamer Mittel aufbaut, aber auf jahrzehntelanger Erfahrung im Bereich Mikrotechnologie und Leichtbau Betontechnik aus dem Brückenbau beruht.“ Das Multi-Chip-Receiver-Design basiert auf IBM Prozessorkühlungen, die im Rahmen einer Kooperation zwischen IBM und dem Egypt Nanotechnology Research Center für die Kühlung von Photovoltaikchips weiterentwickelt wurden. „Die Konstruktion des Systems ist elegant einfach“, sagte Andrea Pedretti, CTO von Airlight Energy. „Wir ersetzen teuren Stahl und Glas mit kostengünstigem Beton und einfachen, unter Druck stehenden, metallisierten Folien. Die kleinen Hightech-Komponenten, insbesondere die Mikrokanalkühler, und die Formen können in der Schweiz hergestellt werden, während die restliche Konstruktion und Montage in den Ziel-Regionen erfolgen kann. Dies führt zu einer Win-Win-Situation, in der das System konkurrenzfähig ist und Arbeitsplätze in beiden Regionen geschaffen werden.“

Die Optik zur Konzentration der Sonneneinstrahlung wird durch die ETH Zürich entwickelt werden. „Zur Optimierung des Designs der optischen Konfiguration und um einheitliche Solarflüsse zu erreichen, damit 2000 Sonnen auf der Oberfläche der PV-Zelle erzielt werden können, sollen für das System fortschrittliche numerische Ray-Tracing-Technologien eingesetzt werden“, sagte Aldo Steinfeld, Professor an der ETH Zürich. Durch diese hohe Konzentration des Sonnenlichts und dank dem radikal kostengünstigen Design gehen die Wissenschaftler davon aus, dass sie einen Preis von unter 250 Dollar pro Quadratmeter Kollektoröffnung erreichen können. Dies ist drei Mal weniger als bei vergleichbaren Systemen. Die Durchschnittskosten für die produzierte Energie werden dann weniger als 10 Dollar-Cents pro Kilowattstunde (KWh) betragen. Zum Vergleich, die Einspeisungspreise für Strom in Deutschland liegen momentan über 25 Cent pro KWh und die Produktionskosten eines Kohlekraftwerkes betragen 5 bis 10 Cent pro KWh.

1. Wasserentsalzung und klimatisierte Luft

Gegenwärtige Konzentratorsysteme liefern nur elektrische Energie und führen die thermische Energie ungenutzt in die Atmosphäre ab. Mit dem Ansatz des HCPVT-Packagings können Wissenschaftler sowohl das Überhitzungsproblem der Solarchips lösen, als auch die thermische Energie für die Wasserentsalzung oder Kühlung nutzen. Zur Solarchip-Kühlung und Wärmewiederverwendung verwenden Wissenschaftler und Ingenieure von IBM eine weltweit führende Technologie, die sie für warmwassergekühlte Supercomputer entwickelt haben. Sowohl in Aquasar an der ETH Zürich als auch in SuperMUC im Leibniz-Rechenzentrum bei München wird warmes Wasser für die direkte Kühlung der Prozessorchips eingesetzt. Die abtransportierte Wärme wird anschließend für die Beheizung von Gebäuden verwendet. „Mikrotechnologie, wie sie in der Herstellung von Computerchips eingesetzt wird, ist ein Schlüsselelement, um eine so effiziente thermische Übertragung vom Photovoltaik-Chip auf die Kühlflüssigkeit zu ermöglichen“, erklärte André Bernard, Leiter des MNT Institutes an der Interstaatlichen Hochschule für Technik Buchs, und fügte hinzu „Durch den Einsatz innovativer Herstellungswege für die Wärmetransferelemente wollen wir eine kosteneffiziente Produktion erreichen“.

Im HCPVT-System wird das 90°C heiße Wasser durch ein Membran-Entsalzungs-System geleitet, in der es verdampft und so entsalzt wird. Ein derartiges System könnte 30-40 Liter Trinkwassers pro Quadratmeter Fläche und Tag liefern, während es netto immer noch Strom mit einer Ausbeute von über 25 Prozent bzw. zwei Kilowattstunden pro Tag produziert. Dies ist etwas weniger als die Hälfte der Menge Wasser, die nach Angaben der Vereinten Nationen eine Durchschnittsperson pro Tag benötigt**. Eine grössere Anlage könnte auch genug Wasser für eine Stadt liefern. Bemerkenswert ist, dass das HCPVT-System durch den Einsatz von thermisch betriebenen Adsorptionskühlern auch zur Kälteerzeugung genutzt werden kann. Ein Adsorptionskühler kann Hitze mittels eines thermischen Kreislaufs über einen Absorber, z.B. aus Kieselgel, in Kälte umwandeln. So könnten sie Kompressionskühler ersetzen, die mit Ozonschicht schädigenden Kühlmitteln betrieben werden. Die Wissenschaftler wollen mit dem HCPVT-System nachhaltig erzeugten Strom und frisches Wasser in verschiedene Regionen der Welt, einschließlich Südeuropa, Afrika, der arabischen Halbinsel, dem südwestlichen Nord-Amerika, Süd-Amerika und Australien, liefern. Ein interessanter Markt sind außerdem entlegene Touristikregionen, besonders Urlaubsorte auf kleinen Inseln wie z.B. die Malediven, Seychellen oder Mauritius. Ein Prototyp des HCPVT-Systems wird momentan im IBM-Forschungslabor in Rüschlikon getestet. Als Teil der Kollaboration werden verschiedene weitere Prototypen in Biasca (Schweiz) und IBM Research folgen. *Concentrating Solar Power: Outlook 2009 veröffentlicht von Greenpeace International, SolarPACES und European Solar Thermal Electricity Association / Foto: IBM

Contact Person Autor des Artikels: Jascha Schmitz - Redakteur der Umweltportale: Solaranlagen-portal.de | Ihr-BHKW.de | Ihre-Waermepumpe.de | klaeranlagen-vergleich.de

Preisvergleich für Ihre Planung

So können Sie in nur 3 Minuten die besten Preise für Ihre künftige Photovoltaikanlage vergleichen!

Jetzt erfahren wie - HIER KLICKEN!